Close Search

Products

Enter keywords

Related results

The peptide-HLA class I tetramer is a valuable tool for rapid and detailed characterization of epitope specific CD8+T cells.

KSEYMTSWFY-A0101

Catalog no.
1001-03
Group
HLA-A
Alpha chain
HLA-A0101
Beta chain
b2m
Peptide
KSEYMTSWFY
Peptide source
NS5, Yellow Fever virus
Format
monomer,tetramer
Storage
Monomers (-20°C), Tetramers (4°C)
Buffer
TRIS/MALEATE pH 7
Shelf life
18 Months
Application
FCM
For Research Use Only (RUO)

Published Research using immunAware reagents and services

23/09/2022

Nature communications

Accumulation of mutations in antibody and CD8 T cell epitopes in a B cell depleted lymphoma patient with chronic SARS-CoV-2 infection

Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations. Recognition of each mutant peptide by CD8 T cells from convalescent donors is reduced compared to its ancestral peptide, with additive effects resulting from double mutations. Querying public SARS-CoV-2 sequences shows that these mutations have independently emerged as homoplasies in circulating lineages. Our data thus suggest that potential impacts of CD8 T cells on SARS-CoV-2 mutations, at least in those with humoral immunodeficiency, warrant further investigation to inform on vaccine design.

04/09/2023

EBioMedicine

Redirector of Vaccine-induced Effector Responses (RoVER) for specific killing of cellular targets

In individuals with malignancy or HIV-1 infection, antigen-specific cytotoxic T lymphocytes (CTLs) often display an exhausted phenotype with impaired capacity to eliminate the disease. Existing cell-based immunotherapy strategies are often limited by the requirement for adoptive transfer of CTLs. We have developed an immunotherapy technology in which potent CTL responses are generated in vivo by vaccination and redirected to eliminate target cells using a bispecific Redirector of Vaccine-induced Effector Responses (RoVER).Following Yellow fever (YF) 17D vaccination of 51 healthy volunteers (NCT04083430), single-epitope YF-specific CTL responses were quantified by tetramer staining and multi-parameter flow cytometry. RoVER-mediated redirection of YF-specific CTLs to kill antigen-expressing Raji-Env cells, autologous CD19+ B cells or CD4+ T cells infected in vitro with a full-length HIV-1-eGFP was assessed in cell killing assays. Moreover, secreted IFN-γ, granzyme B, and TNF-α were analyzed by mesoscale multiplex assays.YF-17D vaccination induced strong epitope-specific CTL responses in the study participants. In cell killing assays, RoVER-mediated redirection of YF-specific CTLs to autologous CD19+ B cells or HIV-1-infected CD4+ cells resulted in 58% and 53% killing at effector to target ratio 1:1, respectively.We have developed an immunotherapy technology in which epitope-specific CTLs induced by vaccination can be redirected to kill antigen-expressing target cells by RoVER linking. The RoVER technology is highly specific and can be adapted to recognize various cell surface antigens. Importantly, this technology obviates the need for adoptive transfer of CTLs.This work was funded by the Novo Nordisk Foundation (Hallas Møller NNF10OC0054577).