31/07/2023
Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature
A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection.
Studies have demonstrated that at least 20% of individuals infected with SARS-CoV-2 remain asymptomatic1-4. Although most global efforts have focused on severe illness in COVID-19, examining asymptomatic infection provides a unique opportunity to consider early immunological features that promote rapid viral clearance. Here, postulating that variation in the human leukocyte antigen (HLA) loci may underly processes mediating asymptomatic infection, we enrolled 29,947 individuals, for whom high-resolution HLA genotyping data were available, in a smartphone-based study designed to track COVID-19 symptoms and outcomes. Our discovery cohort (n = 1,428) comprised unvaccinated individuals who reported a positive test result for SARS-CoV-2. We tested for association of five HLA loci with disease course and identified a strong association between HLA-B*15:01 and asymptomatic infection, observed in two independent cohorts. Suggesting that this genetic association is due to pre-existing T cell immunity, we show that T cells from pre-pandemic samples from individuals carrying HLA-B*15:01 were reactive to the immunodominant SARS-CoV-2 S-derived peptide NQKLIANQF. The majority of the reactive T cells displayed a memory phenotype, were highly polyfunctional and were cross-reactive to a peptide derived from seasonal coronaviruses. The crystal structure of HLA-B*15:01-peptide complexes demonstrates that the peptides NQKLIANQF and NQKLIANAF (from OC43-CoV and HKU1-CoV) share a similar ability to be stabilized and presented by HLA-B*15:01. Finally, we show that the structural similarity of the peptides underpins T cell cross-reactivity of high-affinity public T cell receptors, providing the molecular basis for HLA-B*15:01-mediated pre-existing immunity.
20/02/2024
Cell reports. Medicine
Merkel cell polyomavirus-specific and CD39+CLA+ CD8 TÊcells as blood-based predictive biomarkers for PD-1 blockade in Merkel cell carcinoma
Merkel cell carcinoma is a skin cancer often driven by Merkel cell polyomavirus (MCPyV) with high rates of response to anti-PD-1 therapy despite low mutational burden. MCPyV-specific CD8 TÊcells are implicated in anti-PD-1-associated immune responses and provide a means to directly study tumor-specific TÊcell responses to treatment. Using mass cytometry and combinatorial tetramer staining, we find that baseline frequencies of blood MCPyV-specific cells correlated with response and survival. Frequencies of these cells decrease markedly during response to therapy. Phenotypes of MCPyV-specific CD8 TÊcells have distinct expression patterns of CD39, cutaneous lymphocyte-associated antigen (CLA), and CD103. Correspondingly, overall bulk CD39+CLA+ CD8 TÊcell frequencies in blood correlate with MCPyV-specific cell frequencies and similarly predicted favorable clinical outcomes. Conversely, frequencies of CD39+CD103+ CD8 TÊcells are associated with tumor burden and worse outcomes. These cell subsets can be useful as biomarkers and to isolate blood-derived tumor-specific TÊcells.
20/02/2024
Cell reports. Medicine
Merkel cell polyomavirus-specific and CD39+CLA+ CD8 T cells as blood-based predictive biomarkers for PD-1 blockade in Merkel cell carcinoma
Merkel cell carcinoma is a skin cancer often driven by Merkel cell polyomavirus (MCPyV) with high rates of response to anti-PD-1 therapy despite low mutational burden. MCPyV-specific CD8 T cells are implicated in anti-PD-1-associated immune responses and provide a means to directly study tumor-specific T cell responses to treatment. Using mass cytometry and combinatorial tetramer staining, we find that baseline frequencies of blood MCPyV-specific cells correlated with response and survival. Frequencies of these cells decrease markedly during response to therapy. Phenotypes of MCPyV-specific CD8 T cells have distinct expression patterns of CD39, cutaneous lymphocyte-associated antigen (CLA), and CD103. Correspondingly, overall bulk CD39+CLA+ CD8 T cell frequencies in blood correlate with MCPyV-specific cell frequencies and similarly predicted favorable clinical outcomes. Conversely, frequencies of CD39+CD103+ CD8 T cells are associated with tumor burden and worse outcomes. These cell subsets can be useful as biomarkers and to isolate blood-derived tumor-specific T cells.
12/10/2022
medRxiv : the preprint server for health sciences
A common allele of HLA mediates asymptomatic SARS-CoV-2 infection
Despite some inconsistent reporting of symptoms, studies have demonstrated that at least 20% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will remain asymptomatic. Although most global efforts have focused on understanding factors underlying severe illness in COVID-19 (coronavirus disease of 2019), the examination of asymptomatic infection provides a unique opportunity to consider early disease and immunologic features promoting rapid viral clearance. Owing to its critical role in the immune response, we postulated that variation in the human leukocyte antigen (HLA) loci may underly processes mediating asymptomatic infection. We enrolled 29,947 individuals registered in the National Marrow Donor Program for whom high-resolution HLA genotyping data were available in the UCSF Citizen Science smartphone-based study designed to track COVID-19 symptoms and outcomes. Our discovery cohort (n=1428) was comprised of unvaccinated, self-identified subjects who reported a positive test result for SARS-CoV-2. We tested for association of five HLA loci (HLA-A, -B, -C, -DRB1, -DQB1) with disease course and identified a strong association of HLA-B*15:01 with asymptomatic infection, and reproduced this association in two independent cohorts. Suggesting that this genetic association is due to pre-existing T-cell immunity, we show that T cells from pre-pandemic individuals carrying HLA-B*15:01 were reactive to the immunodominant SARS-CoV-2 S-derived peptide NQKLIANQF, and 100% of the reactive cells displayed memory phenotype. Finally, we characterize the protein structure of HLA-B*15:01-peptide complexes, demonstrating that the NQKLIANQF peptide from SARS-CoV-2, and the highly homologous NQKLIANAF from seasonal coronaviruses OC43-CoV and HKU1-CoV, share similar ability to be stabilized and presented by HLA-B*15:01, providing the molecular basis for T-cell cross-reactivity and HLA-B*15:01-mediated pre-existing immunity.
01/05/2022
Nature immunology
SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8+ T cells
Although mRNA vaccine efficacy against severe coronavirus disease 2019 remains high, variant emergence has prompted booster immunizations. However, the effects of repeated exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens on memory T cells are poorly understood. Here, we utilize major histocompatibility complex multimers with single-cell RNA sequencing to profile SARS-CoV-2-responsive T cells ex vivo from humans with one, two or three antigen exposures, including vaccination, primary infection and breakthrough infection. Exposure order determined the distribution between spike-specific and non-spike-specific responses, with vaccination after infection leading to expansion of spike-specific T cells and differentiation to CCR7-CD45RA+ effectors. In contrast, individuals after breakthrough infection mount vigorous non-spike-specific responses. Analysis of over 4,000 epitope-specific T cell antigen receptor (TCR) sequences demonstrates that all exposures elicit diverse repertoires characterized by shared TCR motifs, confirmed by monoclonal TCR characterization, with no evidence for repertoire narrowing from repeated exposure. Our findings suggest that breakthrough infections diversify the T cell memory repertoire and current vaccination protocols continue to expand and differentiate spike-specific memory.